REGULACIÓN EPIGENÉTICA DEL POTENCIAL SUPRESOR TUMORAL TXNIP

Contenido principal del artículo

Jorge Gutiérrez-Pajares

Resumen

Las células cancerosas adquieren importantes características que les permiten adaptarse a diferentes microambientes y proliferar indefinidamente. Con esa finalidad, se orquestan cambios importantes en una variedad de genes, un grupo de oncogenes es incrementado mientras que otro grupo que suprime el crecimiento tumoral es disminuido. La proteína que interactúa con tioredoxina (o TXNIP) fue inicialmente descrita como un gen que incrementa sus niveles en respuesta a la vitamina D3. Posteriormente, varias funciones biológicas han sido asignadas experimentalmente a TXNIP que resaltan su papel clave como gen supresor de tumores. En este artículo, se describen las actividades de TXNIP relacionadas al cáncer así como la evidencia científica que apoya la regulación epigenética que dirige su disminución en cáncer.

Detalles del artículo

Cómo citar
Gutiérrez-Pajares, J. (2022). REGULACIÓN EPIGENÉTICA DEL POTENCIAL SUPRESOR TUMORAL TXNIP. Revista Científica En Ciencias De La Salud, 1(1), 21–32. https://doi.org/10.61324/csalud.2022.vol1i1.12 (Original work published 31 de julio de 2022)
Sección
Artículos Originales

Citas

Hanahan D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022; 12(1): 31 – 46. https://aacrjournals.org/cancerdiscovery/article/12/1/31/675608/Hallmarks-of-Cancer-New-DimensionsHallmarks-of

Darwiche N. Epigenetic mechanisms and the hallmarks of cancer: an intimate affair. Am J Cancer Res. 2020; 10(7): 1954 – 1978. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7407342/

Li S, Peng Y, Panchenko A. DNA methylation: Precise modulation of chromatin structure and dynamics. Curr Opin Struct Biol. 2022; 75: 102430. https://linkinghub.elsevier.com/retrieve/pii/S0959440X22001099

Kazanets A, Shorstova T, Hilmi K, Marques M, Witcher M. Epigenetic silencing of tumor suppressor genes: Paradigms, puzzles, and potential. Biochim Biophys Acta. 2016; 1865(2): 275 – 288. https://linkinghub.elsevier.com/retrieve/pii/S0304419X16300294

Dushanan R, Weerasinghe S, Dissanayake D, Senthilinithy R. Cracking a cancer code histone deacetylation in epigenetic: the implication from molecular dynamics simulations on efficacy assessment of histone deacetylase inhibitors. J Biomol Struct Dyn. 2022; 40(5): 2352 – 2368. https://www.tandfonline.com/doi/full/10.1080/07391102.2020.1838328

Gursoy-Yuzugullu O, House N, Price B. Patching Broken DNA: Nucleosome Dynamics and the Repair of DNA Breaks. J Mol Biol. 201; 428(9 Pt B): 1846 – 1860. https://linkinghub.elsevier.com/retrieve/pii/S002228361500683X

Hai R, He L, Shu G, Yin G. Characterization of Histone Deacetylase Mechanisms in Cancer Development. Front Oncol. 2021; 11. https://www.frontiersin.org/articles/10.3389/fonc.2021.700947/full

Lin Y, Chen T, Huang Y, Wei P, Lin J. Involvement of microRNA in Solid Cancer: Role and Regulatory Mechanisms. Biomedicines. 2021; 9(4): 343. https://www.mdpi.com/2227-9059/9/4/343

Eniafe J, Jiang S. MicroRNA-99 family in cancer and immunity. Wiley Interdiscip Rev RNA. 2021; 12(3): e1635. https://onlinelibrary.wiley.com/doi/10.1002/wrna.1635

Sicard F, Gayral M, Lulka H, Buscail L, Cordelier P. Targeting miR-21 for the therapy of pancreatic cancer. Mol Ther J Am Soc Gene Ther. 2013; 21(5): 986 – 994. https://linkinghub.elsevier.com/retrieve/pii/S1525001616306785

Lin C, Liao W, Yang T, Lu H, Hsu S, Wu C. MicroRNA‑10b modulates cisplatin tolerance by targeting p53 directly in lung cancer cells. Oncol Rep. 2021; 46(2): 167. http://www.spandidos-publications.com/10.3892/or.2021.8118

Liu X, Guan Y, Wang L, Niu Y. MicroRNA-10b expression in node-negative breast cancer-correlation with metastasis and angiogenesis. Oncol Lett. 2017; 14(5): 5845 – 5852. http://www.spandidos-publications.com/10.3892/ol.2017.6914

Nishiyama A, Matsui M, Iwata S, Hirota K, Masutani H, Nakamura H, et al. Identification of thioredoxin-binding protein-2/vitamin D(3) up-regulated protein 1 as a negative regulator of thioredoxin function and expression. J Biol Chem. 1999; 274(31): 21645 – 21650. https://linkinghub.elsevier.com/retrieve/pii/S0021925819724260

Junn E, Han S, Im J, Yang Y, Cho E, Um H, et al. Vitamin D3 up-regulated protein 1 mediates oxidative stress via suppressing the thioredoxin function. J Immunol. 2000; 164(12): 6287 – 6295. http://www.jimmunol.org/lookup/doi/10.4049/jimmunol.164.12.6287

Cheung E, Vousden K. The role of ROS in tumor development and progression. Nat Rev Cancer. 2022; 22(5): 280 – 297. https://www.nature.com/articles/s41568-021-00435-0

Chen Q, Hou Y, Li D, Ding Z, Xu X, Hao B, et al. Berberine induces non-small cell lung cancer apoptosis via the activation of the ROS/ASK1/JNK pathway. Ann Transl Med. 2022; 10(8): 485. https://atm.amegroups.com/article/view/93813/html

Di S, Fan C, Ma Z, Li M, Guo K, Han D, et al. PERK/eIF-2α/CHOP Pathway Dependent ROS Generation Mediates Butein-induced Non-small-cell Lung Cancer Apoptosis and G2/M Phase Arrest. Int J Biol Sci. 2019; 15(8): 1637 – 1653. http://www.ijbs.com/v15p1637.htm

Gallegos A, Gasdaska J, Taylor C, Paine-Murrieta G, Goodman D, Gasdaska P, et al. Transfection with human thioredoxin increases cell proliferation and a dominant-negative mutant thioredoxin reverses the transformed phenotype of human breast cancer cells. Cancer Res. 1996; 56(24): 5765 – 5770. https://pubmed.ncbi.nlm.nih.gov/8971189/

Baker A, Payne C, Briehl M, Powis G. Thioredoxin, a gene found overexpressed in human cancer, inhibits apoptosis in vitro and in vivo. Cancer Res. 1997; 57(22): 5162 – 5167. https://pubmed.ncbi.nlm.nih.gov/9371519/

Kim Y, Kim Y, Kim M, Kim J, Lee H, Kim T. Thioredoxin-interacting Protein (TXNIP) Mediates Thioredoxin-dependent Antioxidant Mechanism in Endometrial Cancer Cells Treated With 1α,25-dihydroxyvitamin D3. Anticancer Res. 2019; 39(9): 4795 – 4803. http://ar.iiarjournals.org/lookup/doi/10.21873/anticanres.13664

Saitoh M, Nishitoh H, Fujii M, Takeda K, Tobiume K, Sawada Y, et al. Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J. 1998; 17(9): 2596 – 2606. http://emboj.embopress.org/cgi/doi/10.1093/emboj/17.9.2596

Liu H, Nishitoh H, Ichijo H, Kyriakis J. Activation of apoptosis signal-regulating kinase 1 (ASK1) by tumor necrosis factor receptor-associated factor 2 requires prior dissociation of the ASK1 inhibitor thioredoxin. Mol Cell Biol. 2000; 20(6): 2198 – 2208. https://journals.asm.org/doi/10.1128/MCB.20.6.2198-2208.2000

Pramanik K, Srivastava S. Apoptosis Signal-Regulating Kinase 1–Thioredoxin Complex Dissociation by Capsaicin Causes Pancreatic Tumor Growth Suppression by Inducing Apoptosis. Antioxid Redox Signal. 2012; 17(10): 1417 – 1432. http://www.liebertpub.com/doi/10.1089/ars.2011.4369

Wang X, Nachliely M, Harrison J, Danilenko M, Studzinski G. Participation of vitamin D-upregulated protein 1 (TXNIP)-ASK1-JNK1 signalosome in the enhancement of AML cell death by a post-cytotoxic differentiation regimen. J Steroid Biochem Mol Biol. 2019; 187: 166 – 173. https://linkinghub.elsevier.com/retrieve/pii/S0960076018304187

Zhou Y, Zhou J, Lu X, Tan T, Chng W. BET Bromodomain inhibition promotes De-repression of TXNIP and activation of ASK1-MAPK pathway in acute myeloid leukemia. BMC Cancer. 2018; 18(1): 731. https://bmccancer.biomedcentral.com/articles/10.1186/s12885-018-4661-6

Han S, Jeon J, Ju H, Jung U, Kim K, Yoo H, et al. VDUP1 upregulated by TGF-beta1 and 1,25-dihydorxyvitamin D3 inhibits tumor cell growth by blocking cell-cycle progression. Oncogene. 2003; 22(26): 4035 – 4046. https://www.nature.com/articles/1206610

Park K, Yang J, Kwon J, Lee H, Yoon Y, Choi B, et al. Targeted Induction of Endogenous VDUP1 by Small Activating RNA Inhibits the Growth of Lung Cancer Cells. Int J Mol Sci. 2022; 23(14): 7743. https://www.mdpi.com/1422-0067/23/14/7743

Wu N, Zheng B, Shaywitz A, Dagon Y, Tower C, Bellinger G, et al. AMPK-dependent degradation of TXNIP upon energy stress leads to enhanced glucose uptake via GLUT1. Mol Cell. 2013; 49(6): 1167 – 1175. https://linkinghub.elsevier.com/retrieve/pii/S1097276513000993

Hong S, Yu F, Luo Y, Hagen T. Oncogenic activation of the PI3K/Akt pathway promotes cellular glucose uptake by downregulating the expression of thioredoxin-interacting protein. Cell Signal. 2016; 28(5): 377 – 383. https://linkinghub.elsevier.com/retrieve/pii/S0898656816300110

Patwari P, Chutkow W, Cummings K, Verstraeten V, Lammerding J, Schreiter E, et al. Thioredoxin-independent regulation of metabolism by the alpha-arrestin proteins. J Biol Chem. 2009; 284(37): 24996 – 5003. https://linkinghub.elsevier.com/retrieve/pii/S0021925820305895

Kent W, Sugnet C, Furey T, Roskin K, Pringle T, Zahler A, et al. The Human Genome Browser at UCSC. Genome Res. 2002; 12(6): 996 – 1006. http://genome.cshlp.org/lookup/doi/10.1101/gr.229102

Lesurf R, Cotto K, Wang G, Griffith M, Kasaian K, Jones S, et al. ORegAnno 3.0: a community-driven resource for curated regulatory annotation. Nucleic Acids Res. 2016; 44(D1): D126 - 132. https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkv1203

Chen Y, Ning J, Cao W, Wang S, Du T, Jiang J, et al. Research Progress of TXNIP as a Tumor Suppressor Gene Participating in the Metabolic Reprogramming and Oxidative Stress of Cancer Cells in Various Cancers. Front Oncol. 2020; 10. https://www.frontiersin.org/articles/10.3389/fonc.2020.568574

Demokan S, Chuang A, Chang X, Khan T, Smith I, Pattani K, et al. Identification of guanine nucleotide-binding protein γ-7 as an epigenetically silenced gene in head and neck cancer by gene expression profiling. Int J Oncol. 2013; 42(4): 1427 – 1436. https://www.spandidos-publications.com/10.3892/ijo.2013.1808

Stolearenco V, Levring T, Nielsen H, Lindahl L, Fredholm S, Kongsbak-Wismann M, et al. The Thioredoxin-Interacting Protein TXNIP Is a Putative Tumor Suppressor in Cutaneous T-Cell Lymphoma. Dermatology. 2021; 237(2): 283 – 290. https://www.karger.com/Article/FullText/509159

Kim M, Lee H, Choi M, Kang S, Kim Y, Shin J, et al. UHRF1 Induces Methylation of the TXNIP Promoter and Down-Regulates Gene Expression in Cervical Cancer. Mol Cells. 2021; 44(3): 146 – 159. http://molcells.org/journal/view.html?doi=10.14348/molcells.2021.0001

Dutta K, Nishinaka Y, Masutani H, Akatsuka S, Aung T, Shirase T, et al. Two distinct mechanisms for loss of thioredoxin-binding protein-2 in oxidative stress-induced renal carcinogenesis. Lab Investig J Tech Methods Pathol. 2005; 85(6): 798 – 807. http://www.nature.com/articles/3700280

Butler L, Zhou X, Xu W, Scher H, Rifkind R, Marks P, et al. The histone deacetylase inhibitor SAHA arrests cancer cell growth, up-regulates thioredoxin-binding protein-2, and down-regulates thioredoxin. Proc Natl Acad Sci U S A. 2002; 99(18): 11700 – 11705. https://pnas.org/doi/full/10.1073/pnas.182372299

Jiao D, Huan Y, Zheng J, Wei M, Zheng G, Han D, et al. UHRF1 promotes renal cell carcinoma progression through epigenetic regulation of TXNIP. Oncogene. 2019; 38(28): 5686 – 5699. http://www.nature.com/articles/s41388-019-0822-6

Wang J, Zhang L, Chen Y, Zhang T, Yuan P, Liu D. Influence of mir-373 on the invasion and migration of breast cancer and the expression level of target genes TXNIP. J Biol Regul Homeost Agents. 2015; 29(2): 367 – 372. https://pubmed.ncbi.nlm.nih.gov/26122224/

Chen D, Dang B, Huang J, Chen M, Wu D, Xu M, et al. MiR-373 drives the epithelial-to-mesenchymal transition and metastasis via the miR-373-TXNIP-HIF1α-TWIST signaling axis in breast cancer. Oncotarget. 2015; 6(32): 32701 – 32712. https://www.oncotarget.com/lookup/doi/10.18632/oncotarget.4702

Yan G, Xu S, Tan Z, Liu L, He Q. Global identification of miR-373-regulated genes in breast cancer by quantitative proteomics. Proteomics. 2011; 11(5): 912 – 920. https://onlinelibrary.wiley.com/doi/10.1002/pmic.201000539

Li K, Tang M, Tong S, Wang C, Sun Q, Lv M, et al. BRAFi induced demethylation of miR-152-5p regulates phenotype switching by targeting TXNIP in cutaneous melanoma. Apoptosis. 2020; 25(3): 179 – 191. http://link.springer.com/10.1007/s10495-019-01586-0

Zhang P, Wang C, Gao K, Wang D, Mao J, An J, et al. The Ubiquitin Ligase Itch Regulates Apoptosis by Targeting Thioredoxin-interacting Protein for Ubiquitin-dependent Degradation. J Biol Chem. 2010; 285(12): 8869 – 8879. https://linkinghub.elsevier.com/retrieve/pii/S0021925820872846

Sun Q, Wang B, Wei W, Huang G, Liu L, Chen W, et al. ITCH facilitates proteasomal degradation of TXNIP in hypoxia- induced lung cancer cells. Thorac Cancer. 202; 13(15): 2235 – 2247. https://onlinelibrary.wiley.com/doi/10.1111/1759-7714.14552