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ABSTRACT
Cancer cells acquire important features that allow them to 
adapt to different microenvironments and proliferate 
endlessly. To achieve that, important changes in the 
expression of a variety of gene sets are orchestrated, one 
oncogenic gene set is upregulated while another tumor 
suppressing gene set is down-regulated. The thioredoxin 
interacting protein or TXNIP was initially described as a 
vitamin D3-upregulated gene. Later, several biological 
functions have been experimentally assigned to TXNIP that 
highlight its relevant role as a tumor suppressor gene. Here, 
the cancer-related roles of TXNIP are described as well as 
the scientific evidence that supports the epigenetic control 
towards its down-regulation in cancer.
Keywords: cancer cells, epigenetic, oncogenic, tumor.

RESUMEN
Las células cancerosas adquieren importantes 
características que les permiten adaptarse a diferentes 
microambientes y proliferar indefinidamente. Con esa 
finalidad, se orquestan cambios importantes en una 
variedad de genes, un grupo de oncogenes es 
incrementado mientras que otro grupo que suprime el 
crecimiento tumoral es disminuido. La proteína que 
interactúa con tioredoxina (o TXNIP) fue inicialmente 
descrita como un gen que incrementa sus niveles en 
respuesta a la vitamina D3. Posteriormente, varias 
funciones biológicas han sido asignadas 
experimentalmente a TXNIP que resaltan su papel clave 
como gen supresor de tumores. En este artículo, se 
describen las actividades de TXNIP relacionadas al cáncer 
así como la evidencia científica que apoya la regulación 
epigenética que dirige su disminución en cáncer.
Palabras clave: células cancerosas, epigenéticas, 
oncogénicas, tumor.

Jorge Gutiérrez-Pajares¹https://orcid.org/0000-0002-3573-0754



ABSTRACT
Cancer cells acquire important features that allow them to 
adapt to different microenvironments and proliferate 
endlessly. To achieve that, important changes in the 
expression of a variety of gene sets are orchestrated, one 
oncogenic gene set is upregulated while another tumor 
suppressing gene set is down-regulated. The thioredoxin 
interacting protein or TXNIP was initially described as a 
vitamin D3-upregulated gene. Later, several biological 
functions have been experimentally assigned to TXNIP that 
highlight its relevant role as a tumor suppressor gene. Here, 
the cancer-related roles of TXNIP are described as well as 
the scientific evidence that supports the epigenetic control 
towards its down-regulation in cancer.
Keywords: cancer cells, epigenetic, oncogenic, tumor.

RESUMEN
Las células cancerosas adquieren importantes 
características que les permiten adaptarse a diferentes 
microambientes y proliferar indefinidamente. Con esa 
finalidad, se orquestan cambios importantes en una 
variedad de genes, un grupo de oncogenes es 
incrementado mientras que otro grupo que suprime el 
crecimiento tumoral es disminuido. La proteína que 
interactúa con tioredoxina (o TXNIP) fue inicialmente 
descrita como un gen que incrementa sus niveles en 
respuesta a la vitamina D3. Posteriormente, varias 
funciones biológicas han sido asignadas 
experimentalmente a TXNIP que resaltan su papel clave 
como gen supresor de tumores. En este artículo, se 
describen las actividades de TXNIP relacionadas al cáncer 
así como la evidencia científica que apoya la regulación 
epigenética que dirige su disminución en cáncer.
Palabras clave: células cancerosas, epigenéticas, 
oncogénicas, tumor.

EPIGENETIC REGULATION OF THE POTENTIAL Gutiérrez-Pajares, J.

Cytosine methylation consists of nucleotide 
biochemical conversion to 5-methylcytosine 
catalyzed by DNA methyltransferases 
(DNMT) (3). These chemical modifications of 
cytosines, CpG islands, are frequently 
observed in tumor suppressor genes in 
several types of tumors (4). 

Similar to DNA methylation, histone 
deacetylation is another way to suppress 
gene expression since this latter mechanism 
also prevents the binding of the DNA 
polymerase machinery to start gene 
transcription (5). Histones are the core protein 
scaffolds for the double stranded DNA, 
forming the nucleosome (6). When the lysines 
of the N-terminal histones are chemically 
deacetylated, the affinity of these histone tails 
for DNA binding increases to the point it 
impedes DNA transcription (7). Thus, several 
inhibitors of histone deacetylases have been 
developed and studied in clinical trials (5).

MicroRNAs (miRNA) are short non-coding 
single-stranded RNA that target specific 
coding-RNA to block its translation (8). 
Depending on the RNA targets, miRNAs 
could be tumor suppressing or oncogenic 
miRNAs (9). Thus, miR-21 was shown to 
promote pancreatic ductal carcinogenesis by 
targeting RhoB and inducing tumor 
angiogenesis (10). Similarly, miR-10b 
decreases the effect of the antineoplastic 
drug cisplatin by targeting the tumor 
suppressor protein P53 (11) and has been 
suggested as a marker for predicting breast 
cancer metastasis and angiogenesis (12).
In this review, the importance of thioredoxin 
interacting protein, TXNIP, and the epigenetic 
mechanisms of its expression silencing will be 
addressed in relation to cancer.

INTRODUCTION
Cancer development involves a series of 
modifications in gene expression that 
favors the acquisition of essential features 
to adapt, survive and progress its 
malignancy. Currently, fourteen key 
features have been acknowledged as 
hallmarks of cancer: sustaining 
proliferative signaling, evading growth 
suppressors, non-mutational epigenetic 
reprogramming, avoiding immune 
destruction, enabling replicative 
immortality, tumor-promoting 
inflammation, polymorphic microbiomes, 
activating invasion and metastasis, 
inducing/accessing vasculature, 
senescent cells, genome instability and 
mutation, resisting cell death, deregulating 
cellular metabolism, and unlocking 
phenotypic plasticity (1). Most of these 
features are consequences of stable 
modifications in regulators of gene 
expression, also known as epigenetic 
mechanisms (2). To be highlighted, it has 
been observed that several tumor 
suppressor genes are downregulated by 
epigenetic modifications. 

In cancer biology, epigenetic regulators 
mainly include DNA methylation, histone 
acetylation, non-coding RNA and protein 
degradation. Methylation of cytosines in 
gene promoters containing regions of DNA 
with a high ratio of cytosine and guanine 
(CpG islands) is one of the most important 
ways to silence gene expression (3). It is 
important to consider that all cells within 
an individual possess identical genomes. 
Therefore, in order to establish and 
maintain cellular lineage-specific 
expression profiles, the genome has to be 
programmed to express corresponding 
sets of genes.
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Biological functions of TXNIP
TXNIP, also known as Thioredoxin Binding 
Protein 2 or TBP-2, and Vitamin D3 
Up-Regulated Protein 1 or VDU-1, was 
discovered to be upregulated by vitamin 
D3 in in vitro experiments (13). Later, it 
was shown that TXNIP has an oxidant 
effect since it binds to the cysteine 
residues of the antioxidant protein 
thioredoxin and inhibits thioredoxin 
activity (14). Although it has been 
postulated that reactive oxygen species 
(ROS) contribute to accumulation of DNA 
damages promoting malignant 
progression (15), excessive ROS can 
cause cancer cell death (16,17). 
Therefore, it has been proposed that 
TXNIP promotes apoptosis of cancer cells 
by inhibiting the antioxidant effect of 
thioredoxin (18–20). In addition, the 
apoptosis signal-regulated kinase 1 
(ASK1), that triggers cell death, is bound 
and inhibited by thioredoxin (21–23) while 
it is activated by TXNIP (24,25). 

TXNIP also has the ability to regulate cell 
cycle progression. It has been 
demonstrated that TXNIP enters the 
nucleus as a part of a repressor system to 
inhibit the expression of the 
mitotic-promoter cyclin A causing 
cell-cycle arrest (26). In a recent study, it 
was demonstrated that the upregulation of 

TXNIP mediated by a specific 
double-stranded RNA strategy promoted 
the cell cycle arrest of the A549 human 
lung cancer cell line (27). 

In addition, TXNIP regulates cellular 
glucose metabolism. It has been 
demonstrated that TXNIP binds to the 
glucose transporter 1 (GLUT1) and 
triggers the downregulation of GLUT1, 
decreasing glucose uptake in 
non-transformed (28) and cancer cells 
(29).  

Importantly, this metabolic regulation is 
mediated by its arrestin domains and is 
independent of its binding to thioredoxin 
(30). In cancer cells, the oncogenic 
activation of the PI3K/AKT signaling 
pathway decreases TXNIP levels that in 
turn allow the expression and activity of 
GLUT1 for glucose metabolism (29).

Altogether, the evidence supports a 
tumor suppressor role of TXNIP involving 
a pro-oxidant, inhibition of cell-cycle 
progression activities and blockage of 
glucose metabolism as depicted in 
Figure 1.

Rev. Cient. Cienc. Salud 1 (1), 2022 ISSN:

EPIGENETIC REGULATION OF THE POTENTIAL Gutiérrez-Pajares, J.

23



Rev. Cient. Cienc. Salud 1 (1), 2022 ISSN:

 
 

EPIGENETIC REGULATION OF THE POTENTIAL Gutiérrez-Pajares, J.

Figure 1. 
Functions of TXNIP in cancer. TXNIP regulates important aspects of cancer biology: 1) TXNIP 
promotes apoptosis by decreasing the antioxidant protein thioredoxin (TRX) and therefore 
increasing intracellular reactive oxygen species (ROS). Moreover, TXNIP activates the 
apoptosis signal-regulating kinase 1 (ASK1) to induce apoptosis via direct interaction or by 
blocking the inhibition of TRX. 2) TXNIP causes cell-cycle arrest by decreasing the expression 
of cyclin A. Cyclin A is a key protein to conduct the transition of the cycle towards the mitosis 
phase. 3) TXNIP decreases GLUT1 membrane localization and promotes its degradation 
affecting glucose metabolism and cell proliferation.

Genomic organization of TXNIP 
According to the Human Genome browser 
(HGB) at UCSC (hg38/Human), TXNIP 
gene is located in chromosome 1: q21.1 
and contains 4,145 base pairs (bp) 
(including its untranslated region) and is 
orientated in the minus strand. The coding 
region of TXNIP has 2,416 bp distributed in 
8 exons (31). A 203 bp CpG island has 
been predicted to be located 112 bp 
upstream of the start site of TXNIP 
transcription in the HGB (31) according to 
in silico prediction (G. Miklem and L. Hillier, 
unpublished).

An experimentally proven and published 
regulatory region analysis performed by 
the Open Regulatory Annotation 
(ORegAnno) (32) within the HGB (31) 
shows that STAT1, RB1, RBL2, MITF, 
FOXA1, FOS, FOXP1, NFYA, NFYB are

the main transcription factors that have 
response elements in the promoter of 
TXNIP, in close proximity to the 
aforementioned CpG island. Moreover, 
ORegAnno analysis delineates a 23 bp 
miRNA binding site for miR-373 in the 
5’-untranslated region of the TXNIP mRNA.

Epigenetic silencing of TXNIP in cancer
It has been described that the expression of 
TXNIP is frequently down-regulated in 
cancer tissues compared to non-neoplastic 
tissues (33), suggesting a potential role as 
a tumor suppressor protein. The following 
mechanisms, depicted in Figure 2, have 
been identified in cancer cells to explain 
TXNIP down-regulation:

a) Promoter CpG methylation
Further studies demonstrated that cytosine 
methylation was responsible for the
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down-regulation of TXNIP at the epigenetic 
level (Table 1). In support of this 
mechanism, in vitro treatment with an 
inhibitor of DNMT (5’-aza-cytidine) 
increased the expression of TXNIP in head 
and neck squamous cell carcinoma (34), 
cutaneous T-cell lymphoma (35) and 
cervical cancer (36) cell lines. Moreover, 
this in vitro results have been confirmed in 
human tumor samples by using methyl 
specific sequencing methods (34,36) and 
in an in vivo model of rat kidney carcinoma 
(37).

b) Histone deacetylation
The relevance of histone deacetylation in 
the regulation of TXNIP expression is 
mainly supported by the use of inhibitor 
drugs in cell cultures. Thus, adding the 
pharmacological inhibitor of histone 
deacetylases, Trichostatin A, to the DNMT 
inhibitor 5’-aza-cytidine strongly improved 
the TXNIP protein level in HeLa cervical 
cancer cell line (36). Also, the in vitro 
exposure to the inhibitor of histone 
deacetylase SAHA caused the increase in 
gene expression of TXNIP in human cancer 
cell lines from prostate, bladder, myeloma, 
and breast (38). Interestingly, it was 
reported that the epigenetic regulator 
UHRF1 recruited the histone deacetylase 
HDAC1 to TXNIP promoter to decrease 
TXNIP expression in renal cell carcinoma 
(39).

c) miRNA
A few reports have indicated that the 
mRNA of TXNIP possess miRNA target 
sequences that regulate its translation. 
According to the Human Genome Browser 
(31), the ectopic expression of miR-373 
caused the down-regulation of TXNIP in 

the MCF-7 breast cancer cell line (40,41)  
(Table 2). Further analysis showed that 
miR-373 reduced TXNIP protein level 
without affecting its mRNA levels, 
suggesting that miR-373 regulates TXNIP 
expression by a translational inhibition 
instead of mRNA degradation (42). 
Although no specific miR-152-5p binding 
sequence was detailed in TXNIP mRNA, it 
was recently reported that the 
over-expression of miR-152-5p in 
melanoma cells decreased TXNIP (43).

d) Ubiquitination
Earlier, a discrepancy between mRNA and 
protein levels of TXNIP was described in 
an induced model of rat kidney carcinoma 
(37). While TXNIP protein levels remained 
diminished after 12-48 h of ferric nitrate 
enneahydrate treatment, no decrease was 
observed in its mRNA level at the 1-96 h 
period of evaluation (37). Similarly, the 
pharmacological inhibition of the 
proteasome strongly up-regulates the 
TXNIP protein in the MyLa1850 cutaneous 
T-cell lymphoma cell line (35). These 
observations suggest a post-translational 
mechanism that regulates TXNIP protein 
levels.

It has been reported that upon energy 
stress, the AMP-dependent protein kinase 
phosphorylates TXNIP leading to its 
degradation and allowing glucose entry via 
GLUT1 in mouse embryonic fibroblasts 
(28). Further studies pointed to the Itchy 
E3 ubiquitin protein ligase (ITCH) as the 
principal regulator of TXNIP protein 
stability in non-neoplastic epithelial kidney 
and osteosarcoma cells (44). This 
mechanism has also been confirmed in 
lung cancer cells (45). 
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Disease Studied sample Main observations Reference 

Renal 

carcinoma 

Chemically 

induced rat 

kidney 

carcinoma. 

Ferric nitrate enneahydrate induced the 

methylation of the promoter TXNIP 

analyzed by methylation-specific PCR. 

TXNIP protein levels diminished in 

tumor samples compared to normal 

tissue. 

(37) 

Head and 

neck 

squamous 

cell 

carcinoma 

(HNSCC) 

Tumors 

compared to 

normal mucosa. 

JHU-012 and 

JHU-011 cell 

lines. 

Bisulfite sequencing analysis showed 

methylation of the TXNIP promoter in 

tumor samples but no in normal 

mucosa. 

Cell line exposure to 5’-aza-cytidine 

increased the expression of TXNIP by 

microarray analysis. 

(34) 

Cutaneous 

T-Cell 

Lymphoma 

(CTCL) 

Human CTCL 

cell lines. 

Methylation of the promoter of TXNIP 

was confirmed by bisulphite sequencing 

in 2 out of 7 cell lines. 

No methylation of the TXNIP promoter 

was observed in lymphocytes of healthy 

donors while different levels of 

methylation were observed in cancer 

samples. 

(35) 

Cervical 

cancer 

Tumors 

compared to 

normal tissue. 

HeLa, SiHa and 

Caski cell lines. 

Increased levels of CpG methylation of 

TXNIP promoter in cervical cancer 

samples and cell lines compared to 

control tissue. 

Advance stages of cervical cancer 

showed higher levels of TXNIP 

promoter methylation 

UHRF1 was identified as the mediator 

of TXNIP promoter methylation. 

(36) 

 

Table 1. Research studies on TXNIP promoter methylation in cancer
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Figure 2. 
Epigenetic silencing of TXNIP in cancer. The TXNIP promoter contains a CpG island susceptible for 
methylation by DNMT. Furthermore, histone deacetylation by HDAC also contributes to the 
inhibition of TXNIP transcription. After transcription, the TXNIP mRNA can be targeted by two 
miRNAs to block its translation. Finally, TXNIP half-life can be reduced by an AMPK-dependent 
phosphorylation or ITCH-directed pathways. AMPK = AMP-dependent protein kinase, DNMT = 
DNA methylase, HDAC = histone deacetylase, ITCH = Itchy E3 ubiquitin protein ligase.

Table 2. Research studies on miRNAs regulation of TXNIP expression in cancer 

Disease Main observations Reference 

Breast cancer Ectopic expression of miR-373 decreased TXNIP in 

the MCF-7 cell line. 

(40) 

Breast cancer Transfection of pre-miR-373 to MCF-7 cells 

diminished TXNIP and increased migration and 

invasion of cancer cells. No change in proliferation 

was observed. 

(42) 

Melanoma miR-152-5p targets TXNIP to promote its 

downregulation in cancer cell lines. 

(43) 
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CONCLUSION
The Thioredoxin-Interacting Protein or TXNIP 
negatively regulates proliferation, cell cycle 
progression and apoptosis, which are 
relevant hallmarks of cancer cells. In that 
sense, it has been shown that TXNIP is 
down-regulated in several types of cancer. 
Altogether, the data point to a tumor 
suppressor role of TXNIP. The reduced 
expression of TXNIP in cancer cells is 
mediated by well-established epigenetic 
mechanisms. Scientific evidence reports that 
promoter DNA methylation and histone 
deacetylation, miRNA inhibition of mRNA 
translation and proteasome-regulated protein 
degradation are key mechanisms to inhibit 
TXNIP expression, and as consequence, its 
cellular functions.
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